Math 4300
Homework \#5
Solutions
(1) $A=(-1,2), B=(3,8)$ in the Euclidean plane
(a)

(b)


(2) $A=(1,2), B=(1,4)$ in the hyperbolic plane


(3) $A=(1,2), B=(3,4)$ in the hyperbolic plane

What is the line that $A, B$ lie on? Plug $A$ and $B$ into $(x-c)^{2}+y^{2}=r^{2}$ to get

$$
\begin{align*}
& \frac{(1-c)^{2}+2^{2}=r^{2}}{(3-c)^{2}+4^{2}=r^{2}}  \tag{1}\\
& \frac{3}{-2 c+c^{2}+5=r^{2}}  \tag{2}\\
& -6 c+c^{2}+25=r^{2} \tag{1}
\end{align*}
$$

(1) -(2) gives $4 c-20=0$. so, $c=5$.

Then, from (1) we get $r=\sqrt{(1-5)^{2}+4}$

$$
\begin{aligned}
& =\sqrt{(1-5)}+1 \\
& =\sqrt{20}=2 \sqrt{5} \approx 4.47
\end{aligned}
$$

Thus, $A=(1,2), B=(3,4)$
lie on $c_{r}=L_{2 \sqrt{5}}$.


(c)

(d)

(4) (Method 1)

$$
\begin{array}{ll}
P=(-2,-1), & Q=(-2,3) \\
A=(0,0), & B=(2,1)
\end{array}
$$

We have that

$$
\begin{aligned}
P Q & =d(P, Q) \\
& =\sqrt{(-2-(-2))^{2}+(-1-3)^{2}} \\
& =\sqrt{16}=4
\end{aligned}
$$



We want to find $C \in \overrightarrow{A B}$
where $A C=d(A, C)=4$
Let $C=(x, y)$.
since $C \in \overrightarrow{A B}$ we know from class/Hw that

$$
C \in A B \text { we } A+t(B-A) \text { where } t \geqslant 0
$$

So,

$$
\begin{aligned}
& \text { So, } \\
& (x, y)=C=(0,0)+t(2-0,1-0)=(2 t, t)
\end{aligned}
$$

That is, $x=2 t, y=t$

Also since $d(A, C)=4$ we know

$$
\underbrace{\sqrt{(x-0)^{2}+(y-0)^{2}}}_{d(A, C)}=4
$$

This gives $x^{2}+y^{2}=16$
$P$ log $x=2 t, y=t$ into $x^{2}+y^{2}=16$ to get $4 t^{2}+t^{2}=16$
So, $t^{2}=\frac{16}{5}$. Thus, $t= \pm \frac{4}{\sqrt{5}}$
Since $t \geqslant 0$ must be true from above we get $t=\frac{4}{\sqrt{5}}$

Thus, $c=(2 t, t)$

$$
\begin{aligned}
& =(x, 4 \\
& =\left(\frac{8}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right) \approx(3.58,1.79)
\end{aligned}
$$

Then $C \in \overrightarrow{A B}$ and


$$
A C=d(A, C)=4=d(P, Q)=P Q
$$

(4) (Method 2)

See solution above,
You could instead do this.
$P Q=4$ as above
Let $C=(x, y)$.
Want $4=A C=\sqrt{(0-x)^{2}+(0-y)^{2}}=\sqrt{x^{2}+y^{2}}$
So need $16=x^{2}+y^{2}$.
The line $\overleftrightarrow{A B}$ can be described as $y=\frac{1}{2} x$.
Plug $y=\frac{1}{2} x$ into $16=x^{2}+y^{2}$ to get

$$
16=x^{2}+\left(\frac{1}{2} x\right)^{2}
$$

So, $16=\frac{5}{4} x^{2}$.
So, $x^{2}=\frac{64}{5}$
Thus, $x= \pm \frac{8}{\sqrt{5}}$.
Since $C$ must be in the first quadrant we have $x=\frac{8}{\sqrt{5}}$.
Then, $y=\frac{1}{2} x=\frac{1}{2}\left(\frac{8}{\sqrt{5}}\right)=\frac{4}{\sqrt{5}}$.
So, $C=(x, y)=\left(\frac{8}{\sqrt{5}}, \frac{4}{\sqrt{5}}\right)$.
(5) In the hyperbolic plane,
let $P=(1,2), Q=(1,4)$,

$$
A=(0,2), B=(1, \sqrt{3}) .
$$

Find $C \in \overrightarrow{A B}$ where $\overline{A C} \simeq \overline{P Q}$.


Measure $\overline{P Q}$ :

$$
\frac{\text { Measure } P Q}{d_{H}(P, Q)=\left|\ln \left(\frac{4}{2}\right)\right|=|\ln (2)|=\ln (2) .}
$$

Want: Find $C \in \overrightarrow{A B}$ where $d_{H}(A, C)=\ln (2)$

Let $C=(x, y)$.
Want to solve:

$$
\begin{aligned}
\ln (2) & =d_{H}(A, C) \\
& =d_{H}((0,2),(x, y)) \\
& =\left|\ln \left(\frac{\frac{0-0+2}{2}}{\frac{x-0+2}{y}}\right)\right| \\
& =\left|\ln \left(\frac{1}{\frac{x+2}{y}}\right)\right|=\left|\ln \left(\frac{y}{x+2}\right)\right|
\end{aligned}
$$

So we need $\ln (2)= \pm \ln \left(\frac{y}{x+2}\right)$.
So either

$$
\ln (2)=\ln \left(\frac{y}{x+2}\right) \text { or } \ln (2)=\frac{-\ln \left(\frac{y}{x+2}\right)}{\ln \left(\frac{x+2}{y}\right)}
$$

So either

$$
z=\frac{y}{x+2} \text { or } z=\frac{x+2}{y}
$$

So either

$$
\begin{equation*}
\frac{\text { either }}{y=2 x+4} \text { or } y=\frac{1}{2} x+1 \tag{2}
\end{equation*}
$$

Now plug these into

$$
\begin{aligned}
& L_{2}^{L_{2}} \text { to get } C \\
& x^{2}+y^{2}=4
\end{aligned}
$$

We get these two possibilities:

$$
\begin{align*}
& x^{2}+(2 x+4)^{2}=4  \tag{11}\\
& x^{2}+\left(\frac{1}{2} x+1\right)^{2}=4 \tag{2}
\end{align*}
$$

These become:

$$
\begin{align*}
& 5 x^{2}+16 x+12=0  \tag{1}\\
& 5 x^{2}+4 x-12=0 \tag{2}
\end{align*}
$$

(1) becomes: $(5 x+6)(x+2)=0$

So, $x=-\frac{6}{5}$ or $x=-2$
We need $C$ on the right side of $A$, so neither of these
 x's work.
(2) becomes: $(5 x-6)(x+2)=0$

So, $x=\frac{6}{5}$ or $x=-2$.
only $x=\frac{6}{5}$ is positive.

Now plug $C=\left(\frac{6}{5}, y\right)$ into $L_{2}$ to yet:

$$
\underbrace{0^{L}}_{x^{2}+y^{2}=4}
$$

$$
\left(\frac{6}{5}\right)^{2}+y^{2}=4
$$

This gives $y^{2}=4-\frac{36}{25}=\frac{100-36}{25}=\frac{64}{25}$

$$
\text { So, } y= \pm \sqrt{\frac{64}{25}}= \pm \frac{8}{5}
$$

Need $y>0$ so we get $y=\frac{8}{5}$.
Thus, $C=\left(\frac{6}{5}, \frac{8}{5}\right)$.
We should have $d_{H}(A, C)=\ln (2)$

$$
\begin{aligned}
\left.\left\lvert\, \begin{array}{rl}
\frac{\text { Check: }}{d_{H}(A, C)} & =\left|\ln \left(\frac{\frac{0-0+2}{2}}{\frac{6 / 5-0+2}{8 / 5}}\right)\right| \\
& \left.=\left|\ln \left(\frac{1}{\frac{16 / 5}{8 / 5}}\right)\right|=\ln \left(\frac{8}{16}\right) \right\rvert\, \\
& =\left|\ln \left(\frac{1}{2}\right)\right|=-\ln \left(\frac{1}{2}\right)=\ln (2)
\end{array}\right.\right) .
\end{aligned}
$$

(6) Let $(\eta, \mathcal{Z}, d)$ be a metric geometry. Let $A$ and $B$ be distinct points from oD.
(a)

$$
\begin{aligned}
\overline{A B} & =\{C \in g \mid A-C-B \text { or } C=A \text { or } C=B\} \\
& =\{C \in \mathcal{F} \mid B-C-A \text { or } C=B \text { or } C=A\} \\
\begin{array}{l}
A-C-B \\
\text { of } \\
B-C-A
\end{array} & =\overline{B A}
\end{aligned}
$$

of
from class
(b)

$$
\overline{A B} \leq \overline{A B} \cup\{c \in D \mid A-B-C\}=\overrightarrow{A B}
$$

So, $\overline{A B} \subseteq \overrightarrow{A B}$.

Recall from HW 4 that if $C \in \overleftrightarrow{A B}$ then either $C=A, C=B, C-A-B, A-C-B$, or $A-B-C$.

Thus,

$$
\begin{aligned}
\overrightarrow{A B}= & \overrightarrow{A B} \cup\{C \in \mathcal{F} \mid A-B-C\} \\
= & \{\overrightarrow{A B}, B\} \cup\{C \in g \mid A-C-B\} \\
& \cup\{C \in \mathscr{F} \mid A-B-C\} \\
\subseteq & \{A, B\} \cup\{C \in \mathscr{F} \mid C-A-B \text { or } A-C-B \text { or } A-B-C\} \\
= & \overleftrightarrow{A B}
\end{aligned}
$$

Thus, $\overrightarrow{A B} \subseteq \overleftrightarrow{A B}$.
(c) $\overrightarrow{A B}=\overrightarrow{A B} \cup\{C \in \mathcal{D} \mid A-B-C\}$
and $\overrightarrow{B A}=\overrightarrow{B A} \cup\{C \in D \mid C-B-A\}$

$$
=\overline{A B} \cup\{C \in \mathcal{A} \mid C-B-A\}
$$

from part (a)
Thus, $\overrightarrow{A B} \subseteq \overrightarrow{A B}$ and $\overrightarrow{A B} \subseteq \overrightarrow{B A}$.
So, $\overrightarrow{A B} \subseteq \overrightarrow{A B} \cap \overrightarrow{B A}$.
Now let's show $\overrightarrow{A B} \cap \overrightarrow{B A} \subseteq \overrightarrow{A B}$.
Let $C \in \overrightarrow{A B} \cap \overrightarrow{B A}$
Then $C \in \overrightarrow{A B}$ and $C \in \overrightarrow{B A}$.
Since $C \in \overrightarrow{A B}$ either $C \in \overrightarrow{A B}$ or $A-B-C$. ( $*$ )
Since $C \in \overrightarrow{B A}$ either $C \in \overline{B A}=\overline{A B}$ or $B-A-C \quad(k t)$
So $(t)$ and $(* *)$ are both tie.
In $(*)$ we get that $C \in \overline{A B}$ or $A-B-C$.
If $C \in \overline{A B}$ then we are done.

Suppose $A-B-C$.
From $(* *)$ we get either $C \in \overline{A B}$ or $B-A-C$. If $C \in \overline{A B}$ then we are done.

Suppose $B-A-C$.
Then we would have $A-B-C$ and $B-A-C$.
But from HW 4 we know $A-B-C$ and $B-A-C$ cannot both happen Thus this case cannot occur.

Thus, $C \in \overline{A B}$.
So, $\overrightarrow{A B} \cap \overrightarrow{B A} \subseteq \overrightarrow{A B}$.
Therefore from the above we get that $\overrightarrow{A B}=\overrightarrow{A B} \cap \overrightarrow{B A}$.
(d)
$(\leq)$ : Let $c \in \overleftrightarrow{A B}$.
Then either $C-A-B, C=A, A-C-B, C=B$, or $A-B-C$.
If $C-A-B$, then $B-A-C$ and so $C \in \overrightarrow{B A}$
If $C=A$, then $C \in \overrightarrow{A B} \subseteq \overrightarrow{A B}$
If $A-C-B$, then $C \in \overrightarrow{A B} \subseteq \overrightarrow{A B}$
If $C=B$, then $C \in \overrightarrow{A B} \subseteq \overrightarrow{A B}$.
If $A-B-C$, then $C \in \overrightarrow{A B}$.
Thus, from above we get $C \in \overrightarrow{A B} \cup \overrightarrow{B A}$.
$(\underline{)}$ ):
By part (b) we have $\overrightarrow{A B} \subseteq \overleftrightarrow{A B}$ and $\overrightarrow{B A} \subseteq \overrightarrow{A B}$.
Thus, $\overrightarrow{A B} \cup \overrightarrow{B A} \subseteq \overleftrightarrow{A B}$.
(7) Suppose that $A-B-C$ and $P-Q-R$ and $\overline{A B} \simeq \overline{P Q}$ and $\overline{B C} \simeq \overline{Q R}$
Goal: We must show that $\overline{A C} \simeq \overline{P R}$.
Since $A-B-C$ and $P-Q-R$ we know

$$
\begin{align*}
d(A, B)+d(B, C) & =d(A, C)  \tag{x}\\
d(P, Q)+d(Q, R) & =d(P, R) .
\end{align*}
$$

Since $\overline{A B} \simeq \overline{P Q}$ and $\overline{B C} \simeq \overline{Q R}$. we know that

$$
\left.\begin{array}{r}
\text { we know } \\
d(A, B)=d(P, Q) \\
\text { and } \quad d(B, C)=d(Q, R) .
\end{array}\right](* *)
$$

$$
\begin{aligned}
& \text { Thus, } \\
& \begin{aligned}
d(A, C) & \stackrel{(*)}{=} d(A, B)+d(B, C) \\
& \stackrel{(* *)}{=} d(P, Q)+d(Q, R) \\
& \stackrel{(*)}{=} d(P, R) .
\end{aligned}
\end{aligned}
$$

Thus,

So, $\overline{A C} \simeq \overline{P R}$
(8) Suppose that $A-B-C$ and $P-Q-R$ and $\overline{A B} \simeq \overline{P Q}$ and $\overline{A C} \simeq \overline{P R}$.
Goal: We must show that $\overline{B C} \simeq \overline{Q R}$.
Since $A-B-C$ and $P-Q-R$ we know

$$
\begin{align*}
d(A, B)+d(B, C) & =d(A, C)  \tag{*}\\
d(P, Q)+d(Q, R) & =d(P, R) . \\
& \overline{A C} \simeq \overline{P R}
\end{align*}
$$

Since $\overline{A B} \simeq \overline{P Q}$ and $\overline{A C} \simeq \overline{P R}$ we know that

$$
\left.\begin{array}{rl}
\text { we } & \text { know } \\
d(A, B)=d(P, Q) \\
\text { and } & d(A, C)=d(P, R) .
\end{array}\right](* *)
$$

$$
\begin{aligned}
& \text { Thus, } \\
& d(B, C) \stackrel{(*)}{=} d(A, C)-d(A, B) \\
& \stackrel{(* *)}{=} d(P, R)-d(P, Q) \\
& \stackrel{(*)}{=} d(Q, R) .
\end{aligned}
$$

Thus,

So, $\overline{B C} \simeq \overline{Q R}$.

9 (a) Let $A, B, C \in \gamma$ with $A \neq B$.
Let $C \in \overrightarrow{A B}$ and $C \neq A$.
We must show that $\overrightarrow{A B}=\overrightarrow{A C}$.
Let $l=\overleftrightarrow{A B}$.
Let $f$ be a ruler on $l$ where $f(A)=0$ and $f(B)>0$.

Then from class we have that

$$
\overrightarrow{A B}=\{E \in \mathscr{O} \mid 0 \leq f(E)\} .
$$

Since $C \in \overrightarrow{A B}$ we know $0 \leqslant f(c)$
Since $C \neq A$ and $f(A)=0$ and $f$ is une-to-one we know $f(c) \neq 0$.
So in fact $0<f(c)$.

Thus, $f(A)=0$ and $f(C)>0$.
Since $l=\overleftrightarrow{A B}=\overleftrightarrow{A C}$ again from the theorem in class we get

$$
\overrightarrow{A C}=\{E \in \mathcal{F} \mid 0 \leq f(E)\}
$$

Thus, $\overrightarrow{A B}=\{E \in P \mid 0 \leq f(E)\}=\overrightarrow{A C}$.
(9)(b) Suppose $\overrightarrow{A B}=\overrightarrow{C D}$.

We must show that $A=C$.
Suppose that $A \neq C$.
Then, from part (a), since $C \in \overrightarrow{A B}$ and $C \neq A$ we get $\overrightarrow{A C}=\overrightarrow{A B}$.

So, $\overrightarrow{A C}=\overrightarrow{A B}=\overrightarrow{C D}$.
Thus, $A, B, C, D$ all lie on $l=\overleftrightarrow{A C}$.
Let $f: \ell \rightarrow \mathbb{R}$ be a ruler centered at $A$ where $f(A)=0$ and $f(C)>0$. From class this ruler satisfies

$$
l=\overrightarrow{A C}=\{x \in \overleftrightarrow{A C} \mid f(x) \geqslant 0\}
$$

So, $f(A)<f(c)$.
We want to show that $f(C)<f(D)$.
Suppose instead that $f(A)<f(D)<f(C)$. $\infty$

Let $g: l \rightarrow \mathbb{R}$ be given by $g(X)=-(f(X)-f(C))$

From Topic 2 lectures we know that that $g$ is a ruler on $l$.
Note that $g(C)=-(f(c)-f(c))=0$

$$
\text { and } \quad \begin{aligned}
g(D) & =-(f(D)-f(C)) \\
& =f(C)-f(D)>0
\end{aligned}
$$

Since $g$ is a rules on $l$
where $g(C)=0$ and $g(D)>0$,
picture
from class we know

$$
\text { that } \overrightarrow{C D}=\{x \mid g(x) \geq 0\} \text {. }
$$

Since $f$ is unto $\mathbb{R}$ there exists $E \in P$ where $f(c)<f(E)$

$$
\left[\begin{array}{c}
\text { For example pick } E \text { where } \\
f(E)=f(c)+1
\end{array}\right]
$$

Then we have

$$
f(A)<f(D)<f(C)<f(E) .
$$

Since $f(E)>f(c)>f(A)=0$ we know that $E \in \overrightarrow{A C}$.

However,

$$
\begin{aligned}
g(E) & =-(f(E)-f(C)) \\
& =f(C)-f(E)<0
\end{aligned}
$$

Thus, $E \notin \overrightarrow{C D}$. $\leftarrow$ since $\overrightarrow{C D}=\{x \mid g(x) \geqslant 0\}$
Therefore, $E \in \overrightarrow{A C}$ and $E \notin \overrightarrow{C D}$.
But $\overrightarrow{A C}=\overrightarrow{C D}$.
So no such $E$ exists.
Contradiction.
Therefore, $f(C)<f(D)$,
So, $f(A)<f(c)<f(0)$.


Let $h: l \rightarrow \mathbb{R}$ be given by

$$
h(x)=f(x)-f(c)
$$

By topic $2, h$ is a ruler on $l$.
Then, $h(c)=f(c)-f(c)=0$
and $h(D)=f(D)-f(c)>0$
So,

$$
\overrightarrow{C D}=\{x \in \mathcal{D} \mid h(x) \geqslant 0\}
$$



But, $h(A)=f(A)-f(c)<0$
So, $A \notin \overrightarrow{C D}$.
However $A \in \overrightarrow{A B}$ and $\overrightarrow{A B}=\overrightarrow{C D}$.
Contradiction.
Thus, the original assumption that $A \neq C$ canst happen And $A=C$.
(10) $(a)$

Let $S=\left\{C \in \mathbb{R}^{2} \mid C=A+t(B-A)\right.$ where $\left.0 \leq t \leq 1\right\}$. We must show that $\overline{A B}=S$.
$\overline{A B} \subseteq S$ :
Let $C \in \overline{A B}$.
Then either $C=A$ or $C=B$ or $A-C-B$.
If $C=A$, then set $t=0$ and we get $C=A=A+O(B-A)$.

So, if $C=A$, then $C \in S$.
If $C=B$, then set $t=1$ and we
get $C=B=A+1 \cdot(B-A)$
So if $C=B$, then $C \in S$.
Suppose $A-C-B$.
By HW 4 there exists $t$ with $0<t<1$ where $C=A+A(B-A)$.
Then in this case also we have that $C \in S$.

So, $\overline{A B} \subseteq S$.
$S \subseteq \overline{A B}:$ Suppose $C \in S$.
Then, $C=A+t(B-A)$ where $0 \leq t \leq 1$.
If $t=0$, then $C=A+O(B-A)=A \in \overline{A B}$
If $t=1$, then $C=A+1 \cdot(B-A)=B \in \overline{A B}$.
Suppose that $0<t<1$.
Then by HW 4, we have $A-C-B$.
So in this last case $C \in \overline{A B}$.
Thus, $S \subseteq \overline{A B}$.

Since $\overline{A B} \subseteq S$ and $S \subseteq \overline{A B}$ we have that $\overline{A B}=S$.
(10)(b) Let

$$
S=\{C \in \mathscr{D} \mid C=A+t(B-A) \text { where } 0 \leq t\} \text {. }
$$

We must show that $\overrightarrow{A B}=S$.
We prove $\overrightarrow{A B} \subseteq S$ and $S \subseteq \overrightarrow{A B}$.
$\overrightarrow{A B} \subseteq S$ : Let $C \in \overrightarrow{A B}$.
Then, $c \in \overleftrightarrow{A B}$.
So, from class we know that
$C=A+t(B-A)$ where $t \in \mathbb{R}$.
We must show that $t \geqslant 0$.
Suppose instead that $t<0$.
We show this leads to a contradiction.
Case 1: Suppose $\overleftrightarrow{A B}=L_{d}$ for some $d \in \mathbb{R}$.
Let $A=\left(d, y_{a}\right), B=\left(d, y_{b}\right), C=\left(d, y_{c}\right)$
So, $(*)$ gives

$$
\begin{aligned}
& (*) \text { gives } \\
& \left(d, y_{c}\right)=\left(d, y_{a}+t\left(y_{b}-y_{a}\right)\right)
\end{aligned}
$$

Let $f: L_{d} \rightarrow \mathbb{R}$ be the standard ruler, that is $f(d, y)=y$.
Then applying $f$ to the above gives

$$
y_{c}=y_{a}+t\left(y_{b}-y_{a}\right)
$$

$f$ gives us two options:
Either $f(A)<f(B)$

$$
\text { or } f(B)<f(A) \text {. }
$$

That is either

$$
\begin{aligned}
y_{a} & <y_{b} \\
\text { or } \quad y_{b} & <y_{a} .
\end{aligned}
$$

Case $\mid(i)$ : Suppose $y_{a}<y_{b}$.
Then, $y_{c}-y_{a}=\underbrace{t}_{<0} \underbrace{\left(y_{b}-y_{a}\right)}_{>0}<0$
So, $y_{c}<y_{a}$.

Then $y_{c}<y_{a}<y_{b}$.
So, $f(c)<f(A)<f(B)$.
Then, $C-A-B$.
But $C \in \overrightarrow{A B}$, so either $C=A, C=B$, or $A-C-B$ or $A-B-C$.

This conflicts with $C-A-B$. by $1+w 4$.
Thus, we get a contradiction in case $1(i)$.
case $1(\dot{i})$ : Suppose $y_{b}<y_{a}$.
Then, $y_{c}-y_{a}=\underbrace{t}_{<0} \underbrace{\left.y_{b}-y_{a}\right)}_{<0}>0$.
Sos) $y_{c}>y_{a}$
Then, $y_{b}<y_{a}<y_{c}$.
So, $f(B)<f(A)<f(c)$.
Thus, $B-A-C$.

Thus, $C-A-B$.
But $C \in \overrightarrow{A B}$, so either $C=A, C=B$, or $A-C-B$ or $A-B-C$.

This conflicts with $C-A-B$ by HW 4.
Thus, we get a contradiction in case $1(\ddot{u})$.
Therefore, in summary we get a contradiction in both parts of case.

Case 2: Suppose $l=L_{m, d}$.
If you do the same arguments as case 1, but use the standard ruler for $L_{m, d}$ then you will get a contradiction also.

Thus, case 1 and case 2 both give contradictions.
Therefore, $t \geqslant 0$ must be true.
Thus, $C \in S$.
So, $\overrightarrow{A B} \subseteq S$.
$S \subseteq \overrightarrow{A B}$ : Let $C \in S$.
Then, $C=A+t(B-A)$ where $t \geqslant 0$.
We need to show that $C \in \overrightarrow{A B}$.
Let $l=\overleftrightarrow{A B}$
I'll show this for the case when $l=L_{d}$ for some $d \in \mathbb{R}$.
You can try a similar proof for

$$
l=L_{m, d}
$$

Suppose that $l=L_{d}$ for some $d \in \mathbb{R}$.

Let $A=\left(d, y_{a}\right), B=\left(d, y_{b}\right), C=\left(d, y_{c}\right)$.
Then $C=A+t(B-A)$ becomes

$$
\begin{array}{r}
\text { en } C=A+t(d-A)  \tag{*}\\
\left(d, y_{c}\right)=\left(d, y_{a}+t\left(y_{b}-y_{a}\right)\right) \\
\text { standard }
\end{array}
$$

Let $f: l \rightarrow \mathbb{R}$ be the standard ruler Where $f(d, y)=y$.
Case (i): Suppose $y_{a}<y_{b}$, that is $f(A)<f(B)$
Let $g: \ell \rightarrow \mathbb{R}$ be
given by $g(x)=f(x)-f(A)$.
By topic $3, g$ is a ruler on $l$.
Also, $g(A)=f(A)-f(A)=0$ and $g(B)=f(B)-f(A)>0$.
Since $g(A)=0$ and $g(B)>0$ we know

$$
\begin{aligned}
& g(A)=0 \text { and } g(B) \geqslant 0\} . \\
& \overrightarrow{A B}=\{x \in l \mid g(x) \geqslant
\end{aligned}
$$

4 topic 5 notes

Note that $\frac{g(x)}{g(d, y)}=\frac{f(x)}{f(d, y)}-\frac{f(A)}{f\left(d, y_{a}\right)}$

$$
=y-y_{a}
$$

Thus applying $g$ to $(*)$ gives

$$
\begin{aligned}
& \text { Thus applying } g \text { to (*) } \\
& y_{c}-y_{a}=\left[y_{a}+t\left(y_{b}-y_{a}\right)\right]-y_{a} . \\
& \text { So, } \frac{g(c)}{y_{c}-y_{a}}=t\left(y_{b}-y_{a}\right)
\end{aligned}
$$

So, $g(c)=\underbrace{t}_{\geqslant 0} \cdot \underbrace{g(B)}_{>0} \geqslant 0$.
Thus, $C \in \overrightarrow{A B}$.

$$
>0 \quad \begin{aligned}
& \frac{\sin (e)}{A B}=\{x \in l \mid g(x) \geqslant 0\}
\end{aligned}
$$

So case ( $i$ ) is done.
Case (ii) Suppose $y_{b}<y_{a}$, that is $f(B)<f(A)$
Let $g: l \rightarrow \mathbb{R}$ be
given by $g(x)=-(f(x)-f(A))$

$$
=f(A)-f(x)
$$

By topic 3, 9 is a ruler on $l$.

Also, $g(A)=f(A)-f(A)=0$
and $g(B)=f(A)-f(B)>0$
Since $g(A)=0$ and $g(B)>0$ we know

$$
\overrightarrow{A B}=\{x \in l \mid g(x) \geqslant 0\} .
$$

4 topic 5 notes
Note that $\frac{g(x)}{g(d, y)}=\frac{f(A)}{f\left(d, y_{a}\right)}-\frac{f(x)}{f(d, y)}$

$$
=y_{a}-y
$$

Thus applying $g$ to $(*)$ gives

$$
y_{a}-y_{c}=y_{a}-\left[y_{a}+t\left(y_{b}-y_{a}\right)\right]
$$

Therefore, $\frac{g(c)}{y_{a}-y_{c}}=t \frac{g(B)}{\left(y_{a}-y_{b}\right)}$
So, $g(c)=\underbrace{t}_{\geqslant 0}, \underbrace{g(B)}_{>0} \geqslant 0$.
Thus, $C \in \overrightarrow{A B}$.

Therefore, case $(-i)$ is done.
In both cures we get $C \in \overrightarrow{A B}$.
Thus, $S \subseteq \overrightarrow{A B}$.

Therefore, $S=\overrightarrow{A B}$.
(11) Let $A=\left(x_{1}, y_{1}\right)$ and $B=\left(x_{2}, y_{2}\right)$ with $x_{1}<x_{2}$.
Suppose $A$ and $B$ both lie on $L_{r}$. Suppose that $C=(x, y)$ lies on ${ }_{c} L_{r}$ and that $x_{1}<x<x_{2}$.
We must show that $C \in \overline{A B}$.
Since $C \neq A$ and $C \neq B$ this comes down to showing that $A-C-B$

We know $A, B, C$ are distinct points all lying on ${ }_{c} L_{r}$.
Let $f: L_{r} \rightarrow \mathbb{R}$ be the standard ruler given by $f(a, b)=\ln \left(\frac{a-c+r}{b}\right)$.

Recall that $f^{-1}: \mathbb{R} \rightarrow{ }_{c} L_{r}$ is given by

$$
\begin{aligned}
& f^{-1}(t)=(c+r \tanh (t), r \operatorname{sech}(t))
\end{aligned}
$$

Let $f(A)=t_{1}, f(B)=t_{2}, f(c)=t$.
Then

$$
\begin{aligned}
& x_{1}=c+r \tanh \left(t_{1}\right) \\
& x_{2}=c+r \tanh \left(t_{2}\right) \\
& x=c+r \tanh (t)
\end{aligned} \quad \begin{aligned}
& \text { Here } \\
& A=\left(x, y_{1}\right) \\
& B=\left(x_{2}, y_{2}\right) \\
& c=(x, y)
\end{aligned}
$$

We ave given that $x_{1}<x<x_{2}$.
Since $\tanh (s)$ is an increasing function this implies that $c+\tanh (s)$ is an increasing function.
So, $x_{1}<x<x_{2}$ implies $t_{1}<t<t_{2}$.
Thus, $f(A)<f(c)<f(B)$
Therefore $A-C-B$.

